
1 -  - 

FLOW FIELD RESULTING  FROM 
FORWARD-FACING NOZZLES EXHAUSTING 
NEAR A LARGE CYLINDRICAL BODY 
AT FREE-STREAM MACH  NUMBERS 
OF 3.0, 4.5, A N D  6.0 

by James A .  Martin  and Robert J .  McGhee 

Langley Research Center 
Hampton, Va. 23365 

/' 

/ '  

. .  

NATIONAL  AERONAUTICS  AND  SPACE  ADMINISTRATION WASHINGTON,  D. C. JANUARY .1.971 



~~ ~ 

TECH LIBRARY KAFB, NU 

- . - 0333283 
1. Report No. 2. Government Accession  No. 

- ~" NASA ~. TN  D-el03 ~ ". ." ~ 

- 
3. Recipient's Catalog No. 

~~~~ ~ 
~~~ ~ 

4. Title and Subtitle FLOW FLELD RESULTING  FROM FORWARD- 5. Report Date 
FACING  NOZZLES EXHAUSTING NEAR  A LARGE  CYLINDRI- 1 January 1971 
CAL BODY AT  FREE-STREAM MACH NUMBERS O F  3.0, 4.5, ' 6. performing Orqanization &de 
AND 6.0 

"~ . .. - - ~ _" "" 
~ 

~ 

7. Author(s) 8. Performing Orqanization Report No. 

J a m e s  A. Martin and Robert J. McGhee L-7333 
. ". .. 

126-13-10-22 9. Performing Organization Name  and  Address 
10. Work Unit No. 

NASA Langley  Research  Center 
Hampton,  Va.  23365 

11. Contract or Grant No. 

- ~ . ". ~ 

13. Type of Report and  Period  Covered 
12. Sponsoring  Agency  Name  and  Address Technical  Note 

~ 

National  Aeronautics  and  Space  Administration 
Washington, D.C. 20546 

14. Sponsoring  Agency  Code 

_ _ ~ _ _ _ _ ~ ~ ~  ~~ -~ 
16. Abstract 

~~ 
~= ... -~ . ~ ~ ~ 

Effects of nozzies  exhausting  forward  near a large  cylindrical  body  have  been 
investigated  for  free-stream  Mach  numbers of 3.0, 4.5, and 6.0 and  Reynolds  numbers  per 
me te r  (foot)  from 2.6 X lo6 (0.8 X lo6) t o  6.6 X l o6  (2.0 X lo6). Jet   pressure,   forebody 
shape,  centerbody  length,  number of nozzles  firing,  and  jet  Mach  number  were  varied. 
The  extent of the  nozzle-exhaust  flow  was  constrained  by  the  location of the bow shock 
wave.  Free-interaction  transitional  and  turbulent  separation  existed as well as separa-  
tion  at  the  forebody-cylinder  juncture. Jet stagnation  pressure,  jet s ta t ic   pressure,   and 
je t   mass  flow appeared  to be the  dominant  nozzle  parameters. 

. - ~ " 

17. Key Words  (Suggested by Authoris) 1 18. Distribution Statement 

Exhaust  plumes 
Separated  flow 
Launch  vehicles 

Unclassified - Unlimited 

- - = = . 

19. Security Classif. (of this report) T~o.  ;;ty Classif. (of this page)  
~ . ~ 

21. NO. of Pages 22. Price' 

Unclassified  Unclassified $3.00 59 
. . -~ ~ _ _ _  . -~ . . . -~ 

For sale by the  National  Technical  Information Service, Springfield,  Virginia 22151 



FLOW FIELD  RESULTING FROM FORWARD-FACING NOZZLES 

EXHAUSTING NEAR  A LARGE CYLINDRICAL BODY AT 

FREE-STREAM MACH NUMBERS OF 3.0, 4.5, AND 6.0 

By J a m e s  A. Martin  and  Robert J. McGhee 
Langley  Research  Center 

SUMMARY 

Some  effects of forward-facing  supersonic  conical  nozzles  exhausting  nitrogen  into 
an  oncoming  stream  near a large  cylindrical body have  been  investigated  for  free-stream 
Mach numbers of 3.0, 4.5,  and 6.0. Schlieren  data  and  surface  pressure  data  forward of 
one of the  nozzles  were  obtained.  The jet pressure was varied  over a wide range  at  jet- 
exit  Mach  numbers  from 2.20 to 4.60. The  Reynolds  number  per  meter (foot) varied 
from  approximately 2.6 X lo6  (0.8 x 106)  to 6.6 X 106 (2.0 X 106).  Forebody  shape, 
centerbody  length,  and  number of nozzles  firing  were  also  varied. 

The  investigation  showed  that  the  location of the bow shock  wave  was  important  in 
determining  the  extent of the  flow  which  originates as the  exhaust flow from  the  nozzles. 
When the flow  which  was  initially  the  free-stream flow separated  at  the  forebody-cylinder 
juncture,  the  level of the  surface  pressures  was  closely  related  to  the  separation  angle.  
When the  separation  occurred  on  the  cylindrical  section of the  model,  it was  f ree-  
interaction  separation and  both transitional and  turbulent  types  appeared  to  exist, 
depending  on  local  Reynolds  number. Jet   stagnation  pressure,   jet   static  pressure,  and 
jet  mass  flow  appeared  to be the  dominant  nozzle  parameters  in  determining  the  extent 
to which the  flow  from  the  nozzles  affected  the  flow  field.  The  surface  pressure  just  for- 
ward of the  nozzle  exit  did not depend  on  free-stream  conditions  and  therefore was  sim- 
ilar to  static  test  results  for  underexpanded  free  jets  impinging upon an  adjacent  surface, 
except  for  the  smaller  ratios of jet-exit   static  pressure  to  free-stream  static  pressure.  

INTRODUCTION 

During  flights of rocket  vehicles at high  altitudes  and  high  Mach  numbers,  the 
rocket-motor  nozzles  often  exhaust at pressures  far greater   than  the  pressure of the 
surrounding  environment.  Exhaust  plumes  result which may  cause  extensive  boundary- 
layer  separation  and  high  surface  heating. If the  jet  exhaust  impinges upon  adjacent 
surfaces,  large  local  loads  may  occur.  Investigations of such  problems  have  been 
reported,  for  example,  in  references 1 and 2. 



When rocket-motor  nozzles  exhaust  forward,  such as when retrorockets   are  
employed  for  separation of tandem  vehicle  stages,  the  resulting  flow  field, as shown  in 
reference 3, can  contain  extensive  regions of flow  separation  and  can  result  in  large 
local  surface  pressures.  Because  this  complex  flow  field is difficult  to  analyze,  an  addi- 
tional  experimental  investigation  was  initiated  to  further  the  understanding of the  flow 
field which results when forward-facing  supersonic  nozzles are exhausted  near a body 
immersed  in a high  supersonic or low  hypersonic  stream.  The  effects  on  the  flow  field 
and  local  surface  pressures  were  investigated  for  variations  in  jet  pressure,  forebody 
shape,  centerbody  length,  number of nozzles  firing,  and  nozzle  characteristics. 

SYMBOLS 

The  data  were  obtained  in  the U.S. Customary  Units but are  presented  in both 
International  Units (SI) and U.S. Customary  Units. 

P6 - Pj 
impingement  pressure  coefficient, 

modified  pressure  coefficient, pa3 pa3 

- Y j  Mj 2 ( W ) j  
2 Pj 

('P 96) mod 

d  diameter of cylinder, 6.71 cm (2.64 in.) 

Ma3 free-s t ream Mach number 

Mj jet-exit Mach number,  calculated  from  ideal  one-dimensional  flow 

P local  surface  static  pressure 

p j  
jet-exit  static  pressure 

Pt , j  
jet  stagnation  pressure  measured  in  plenum  chamber 

- 
Pt , j  

rat io of jet stagnation  pressure  to  reference  jet  stagnation  pressure, 

Pt , j  
/6.895  MN/m2 pt,j/lOOO lb/in2) 

p6 

2 

static  pressure  at   orifice 6 (see  fig. 2) 



PC0 free-s t ream  s ta t ic   pressure 

'j 
jet dynamic  pressure 

(T/Tt)j  ratio of static temperature  to  stagnation  temperature of jet 

X orifice  location  measured  from  model  base 

n 

Yj  ratio of specific  heats of jet (yj = 1.40) 

APPARATUS AND TESTS 

Model 

A  sketch of the  general  arrangement of the  models is shown  in  figure 1, and  model 
detai ls   are  shown in  figure 2. Each  model  consisted of a forebody, a centerbody,  and  an 
afterbody.  The  forebodies  and  centerbodies  were  constructed of aluminum.  The  after- 
body was constructed of steel  and  housed  the  plenum  chamber  for  the  compressed  gas 
supply  to  the  four  nozzles.  The  compressed  gas  passed  through a hollow  sting  and was 
admitted  into  the  plenum  chamber  through  louvers, as in the  investigation of reference 3. 
The 30° half-angle  cone, 15O half-angle  cone,  ogive,  and flat forebodies (fig. 2) were 
interchangeable  with  the  short  centerbody. (See fig. 1.) The 16O half-angle  cone  fore- 
body  and  long  centerbody  (fig. 1) arrangement was the  same  model  component  used  in  the 
investigation of reference  3  and  could  be  used  only as a unit.  A  common  afterbody was 
used  for all test  models. 

Four  different  sets of conical  nozzles (fig. 2) were  used  in  the  investigation  and 
provided  jet-exit  Mach  numbers of 2.20, 3.01, 3.68, and 4.60 which  were  calculated  for 
gaseous  nitrogen  from  one-dimensional  theory.  Caps  were  provided so that  any  combina- 
tion of one to  four  nozzles  could be tested.  Gaseous  nitrogen at local  atmospheric  tem- 
perature  was  the  exhaust  medium. 

Wind Tunnel 

The  tests  were  conducted  in a 0.6048-meter (2 foot)  hypersonic  facility at the 
Langley  Research  Center.  This wind tunnel,  described  in  reference 4, is an  ejector  type 
which  provides  continuous  flow at high  Mach  numbers  and  low  densities.  The  average 
test conditions are shown  in  the  following  table: 
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3 .O 
4.5 
6 .O 

Stagnation 

kN/m2 O R  OK 

Stagnation 

p e r  foot per   meter  lb/ft2 

311 560 96 

1 .o 3.28 6474 310 760 422 
.80 2.62 2402 115 760 422 

2.0 X lo6 6.56 X lo6 2005 

temperature   pressure 
Reynolds  number 

Nitrogen  Supply 

High-pressure  gaseous  nitrogen  was  generated by pumping  liquid  nitrogen  to  the 
required  storage  pressure  and  converting it from  liquid  to  gas  in a steam-actuated  heat 
exchanger.  The  high-pressure  gaseous  nitrogen  was  then  stored  in  tanks with a capacity 
of 22.65 m3 (800 ft3).  Suitable  pressure-reducing  and  pressure-regulating  valves  were 
remotely  controlled  to  obtain  the  nitrogen  gas  pressure  in a manifold  outside  the test 
section  which,  in  turn,  fed  the  nozzle  plenum  chamber  in  the  model.  Once  the  correct 
pressure  was  obtained  in  the  manifold, a quick-acting  guillotine  valve  was  employed  to 
initiate  and  terminate  the  flow  to  the  nozzles.  Minor  pressure  adjustments  could  be  made 
after  initiation of flow  through  the  nozzles. 

Instrumentation 

Six static pressure  or i f ices  0.15 cm (0.06 in.) in  diameter  were  located  on  the body 
surface  in  the  plane of the  model  center  line  and  nozzle 1 forward of the  top-mounted 
nozzle as shown  in figure 2. Simultaneous  measurements of the  s ix   or i f ice   pressures ,  
as well as the  nozzle  plenum  pressure,  were  obtained  from absolute-pressure-measuring 
transducers.  Data  were  obtained by a high-speed  data  acquisition  system  and  recorded 
on magnetic  tape. In addition,  schlieren  photographs  taken at each  datum  point  with  the 
use of a 2-microsecond  flash  from a xenon  light  source  were  used  for a visual  study of 
the  jet-interaction  phenomena. 

Tests  and  Accuracy 

The  models  were  tested at f ree-s t ream Mach  numbers of 3.0, 4.5, and 6.0. The  jet 
stagnation  pressures  were  varied  from 0.345 to  8.274 MN/m2 (50 to 1200  lb/in2).  All 
data  were  obtained  without  boundary-layer  trips  on  the  model  because no particular  flight 
condition  was  simulated. At jet-off  conditions,  transitional  flow  probably  existed  over 
the rear of the  long  centerbody  model  for M, = 3.0, but because of the  low  Reynolds  num- 
be r s  at M, = 4.5 and M, = 6.0, the  flow  was  probably  laminar  over  the  entire  model. 

The  free-stream Mach  number  in  the  region of the test model  was  accurate  within 
k0.04. The jet stagnation  pressures  quoted  herein are estimated  to  be  accurate within 
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rt2 percent.  The jet Mach  numbers  were  calculated  from ideal one-dimensional  inviscid 
flow  and  the  measured  throat  and  exit  diameters of each  nozzle.  The  nozzles  were  mea- 
sured  before  and after the test and  the  variation  in  the  calculated exit Mach  number  due 
to  variations  between  nozzles  and  wear  was  determined  to  be 0.10 for  the  worst  case. 
The effect of variations  from  ideal  one-dimensional  inviscid  flow  has not  been deter- 
mined.  The  absolute  level of accuracy  has not  been  established  for  the  local  surface 
static-pressure data, but the  values of p/pW  presented are believed  to  give  an  accurate 
indication of the  trends  and  levels of the  surface  pressure at that  orifice.  The  pressure 
data at orifice  6  exhibited a nonrepeatability of about 25 percent.  Approximately 20 sec- 
onds of time  elapsed  before  each  data  point  was  taken. 

RESULTS AND DISCUSSION 

The  results of this  investigation  have  been  arranged  to  illustrate  the  flow  field 
which resul ts  when forward-facing  nozzles  are  exhausted  near a body into an  oncoming 
stream  and  the  changes  which  occur  in the flow field  due  to  variations of jet pressure ,  
model  geometry,  number of nozzles  firing,  and  nozzle  characteristics. 

Figure  3  shows  the  flow  field  for  the  basic  test  condition  around which parameters  
were  varied at M, = 6.0. The basic tes t  condition  consisted of the  reference jet pres-  
su re  = 6.895  MN/m2 o r  1000 lb/in2 , the 30° cone  forebody,  and  the  short  center- 
body with  four Mj = 3.68 nozzles.  Figures 4 to 17  illustrate  the  effect of parameter 
variations  on  the  flow  field.  Jet-off  data  have  been  included  for  reference.  Figures 18 
to  20 show a correlation of jet-impingement  pressure. 

) 

Basic  Test  Condition at M, = 6.0 

A  schlieren  photograph of the  flow  field  for  the  basic  test  condition at M, = 6.0 
is shown  in  figure  3(a)  and  pertinent  details  have  been  identified  in  the  schematic  repre- 
sentation of this flow  field  presented  in  figure  3(b).  There are four  portions of the flow 
field:  the  primary  flow  (initially  the free stream);  the  secondary  flow  (originating as the 
exhaust  flow  from  the  nozzles  and  turning  outward  and  rearward); a viscosity-induced 
portion (bounded  by the primary  and  secondary  flows  and  the body); and  the  wake  (behind 
the body and  the  secondary  flow).  Detailed  descriptions of these  portions of the  flow  field 
have  been  given  in  reference  3  and  the  flow  field is indicated  in  sketch (a). Some  dis- 
turbances  from  the  secondary  flows  from  nozzles 2 and 4, on  the  sides of the  model, are 
visible  in figures 3(a)  and 3(b)  but are located  out of the plane of the  model  center  line  and 
nozzle 1. All  other  features referred t o  in the  photographs are essentially  located  in  the 
plane of the  model  center  line  and  nozzle 1. 
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Free-stream 

Separated  region 

Pr imary 
f low 

Sketch  (a) .- Schemat i c   r ep resen ta t ion  of f low-f ie ld   model .  

The  location of the  primary  separation  streamline  (between  the  primary  flow  and 
the  forward  section of the  separated  region) is clearly  defined  where  the  shear  layer is 
laminar  (near  the  separation  point, which is shown for   this  test condition at the  cone- 
cylinder  juncture)  but is poorly  defined  from  shear-layer  transition  to  the  confluence of 
the  shear  layers  (where  the  primary  and  secondary  shear  layers join). A shear   layer  is 
presumed  to  be  laminar if it appears as a thin  white  line  and  turbulent if it appears as a 
wide  uneven  band.  The  location of the  secondary  flow  separation  streamline  (between 
the  secondary  flow  and  the aft section of the  separated  region) is likewise  clearly  defined 
until  transition  occurs  in  the  shear  layer  and  then  poorly  defined  to  the  confluence  region. 
The  separation of the  secondary  flow is of the  free-interaction type. ("Free  interaction" 
is the  term  used  to  describe  separation which occurs without a local  constraint  on  the 
location of the  separation  point  other  than  interaction of the  boundary  layer  and  the  invis- 
cid  flow  external  to  the  boundary  layer.)  The  primary  flow  inside  the bow shock  wave, 
as shown,  seems  to  divide,  leave  the  plane of the  model  center  line  and  nozzle 1, and  flow 
around  the  sides of the  secondary flow; thus,  the bow shock wave  was  allowed to  intersect 
the  boundary of the  secondary  flow.  The bow shock  wave is straight  for a short  distance 
behind  the  expansion  but  then  turns  outward  where it is intersected first by compression 
waves  from  the  thickening of the  shear  layer;  second, by compression  waves  from  the 
confluence of the  shear  layers;  and  finally, by the  boundary of the  secondary  flow itself. 
A boundary  between  the  secondary  flow  and  the  presumed wake is indicated  on  the  sche- 
matic,  but since  this  boundary  was not discernible  on  the  photograph its location is at best 
only  approximate. 

The  pressure data for  the  basic test condition at M, = 6.0 is shown  in  figure  6(c) 
( = 1.0). Because  the  separation point was at the  cone-cylinder  juncture,  the  pres- 
su re  at even  the  forward  orifices  was  higher  than  that  for  the  jet-off  condition.  Ori- 
fices 1 and 2 were  in  the  region of separated  flow  where  the  shear  layer  was  laminar. 
Orifice 3 was  in  the  region  where  the  shear  layers  were  turbulent  and  near  the  confluence 
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of the  shear layers, and  orifice 4 was  near  the  station at which  transition  occurred  in  the 
shear   layer  of the  secondary flow. Orifice 5 was  under  the  laminar  part of the  secondary 
shear  layer  and  therefore  the  pressure  was  lower.  Orifice  6  was  just  forward of the jet 
impingement and therefore  registered a high pressure.  

Effect of Free-Stream  Conditions 

In  figures 4 to   17,  as M, increased,  free-stream  static  pressure  and  Reynolds 
number  decreased.  Because  these  additional  changes both greatly  affect  the  resulting 
flow  field  and  surface  pressure  distribution,  direct  comparison of data at different free- 
s t ream Mach numbers  cannot  be  made  in  most  figures.  The  free-stream  Mach  number 
directly  affects  the  position of the bow shock  wave.  The  importance of the  bow-shock- 
wave  location is discussed when the  effect of forebody  shape is presented. 

Where  free-interaction  separation  occurred,  the  shear  layer  was  transitional  or 
turbulent,  depending  at  least  partly on the  free-stream  unit  Reynolds  number. In  fig- 
ure  5(a),  &.,j = 1.0,  the  separation  shown is typical of transitional  free-interaction  sepa- 
ration;  that ls, the  separation point is located in a region of constant  geometry  (near  the 
intersection of the  separation  shock  wave and the  boundary  layer),  the  separation  angle 
is small  (the  angle  between  the  separation  streamline  and  the  body),  and  transition  occurs 
within  the  separation  region.  The  Reynolds  number  based on free-stream  Reynolds 
number  per  unit  length  and  the  distance  from  the  nose  to  the  separation point was 
0.5 X lo6?  In  figure  9(a)  for Pt . = 1.0, 16' cone  forebody,  and a long  centerbody, a flow 
field is shown at M, = 3.0 in  which  the  Reynolds  number at separation  was 2.3 x 10 , 6 

and  the  separation  was of the  turbulent  free-interaction  type;  that is, the  separation point 
was  located  in a region of constant  geometry,  the  separation  angle  was  large,  and  transi- 
tion  occurred  near  or  before  separation.  In  the  case  shown,  transition  may not have 
occurred  before  separation  but  did  occur  before  the  shear  layer was  established. No 
laminar  free-interaction  separation  was  observed  in  this  investigation;  the  separation 
point  always  reached  the  forebody  at  the  lower  Reynolds  numbers,  even  for a low  jet 
p ressure  as in  figure 5(c) it . = 0.1). 

lent  free-interaction  separation  did not disagree with the  conclusions  drawn  from  the 
photographs.  In figure 6(a)  (corresponding  to  fig.  5(a), tjt . = 1.0 , the   pressures  at 
orifices 1 and 2 were  near  free s t r eam and  indicated  that  the  separation  angle  was  small, 
and  the  surface  pressure  increased  where  transition  occurred  in  the  shear  layer, as 
expected  for  transitional  free-interaction  separation. (See ref.  5.) In  figure lO(a), the 
separation  point  on  the  long  centerbody  occurred  very  near  orifice 3. (See  fig.  9(a), 
fit,j = 1.0; 16O cone  forebody;  long  centerbody.) It is therefore  likely  that  the  surface 
pressure  ra t io   remains  near  1.0 to  that  point  and  then  jumps t o  tine higher  level  shown 

,I 

( ,J 
The  surface-pressure  data  corresponding  to  the  example of transitional  and  turbu- 

,I ) 
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by orifices  4  and  5  since  such a pressure  distribution would  be  expected  for  turbulent 
free-interaction  separation.  (See ref. 5.) 

Effect of Jet P res su re  

The effects on the flow field of varying  the jet pressure  are presented  in  fig- 
u r e s  5(a),  5(b),  and  5(c),  for M, = 3.0, 4.5, and 6.0, respectively,  for  the 30° cone  fore- 
body  with the  short  centerbody  and all four  nozzles  firing at Mj = 3.68. The  corre- 
sponding  surface  pressure  data are presented  in  figure 6 in  the  form of  p/p, plotted 
as a function of the  distance  from  the  base of the  model  in  diameters, x/d. 

At M, = 3.0 (fig.  5(a)),  the  separation point was aft of the  cone-cylinder  juncture 
for  all jet  pressures.  The  separation  was of the  transitional  free-interaction  type  for 
- . = 0.2,  1.0,  1.2,  and perhaps 0.6. At pt,j = 1.2, the  secondary  flow  appears  to  extend 
forward of and  above  the  confluence of the  shear  layers,  and  the  extent of separation  does 
not appear  to  have  increased  from  that at the  reference  jet   pressure.  (In order  for  the 
secondary  flow  to  extend  forward of and  above  the  confluence of the  shear  layers,   some of 
the  primary flow must  divide,  leave  the  plane of the  model  center  line  and  nozzle 1, and 
flow  around  the  secondary flow  between  the  secondary  flows of two  adjacent  nozzles.) At 
- . = 0.2, the  secondary  flow  appears to remain  attached  to  the point of maximum  forward 
penetration,  and, as a result ,   there is a stronger  interaction  with  the  primary flow than  for 
- = 0.6. This  particular flow  field is s imilar   to   the flow  field  which  occurs  when a jet 
is exhausted  forward  from  the  front of a blunt body at a low  jet  pressure as reported  in 
reference 6. 

Pt ,J 

Pt ,I 

't,j 

At M, = 4.5  and M, = 6.0 (figs.  5(b)  and  5(c)),  the  separation point of the  pri-  
mary  shear  layer  was  located at the  cone-cylinder  juncture  for  even  the  lowest test jet 
pressures  and  hence is not of the  previously  discussed  free-interaction  type.  As  the  jet 
pressure  was  increased,  the  separation  angle  increased.  This  increased  angle  decreased 
the  expansion  around  the  cone-cylinder  juncture.  The  turning of the bow shock  wave by 
the  expansion  was  therefore less at the  higher  jet  pressures,  and  the bow shock  wave 
therefore  appeared  to  move  outward as a result  of increased  jet   pressure.  As expected, 
the  surface  pressures  (f igs.  6(b)  and  6(c))  increased  with  increased  separation  angle  and 
jet   pressure.  

Effect of Forebody  Shape 

The  eiiect of forebody  shape on the flow  field is shown by the  schlieren  photographs 
for  M, = 3.0, M, = 4.5,  and M, = 6.0 in  figures  7(a),  7(b),  and  7(c),  respectively. 
The  corresponding  surface  pressures p/p, a r e  plotted  against  x/d  in  figure 8. 
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At M, = 3.0, the flat forebody  photograph is the only  photograph  in  figure  ?(a)  in 
which a laminar  shear  layer is not  visible aft of the  separation  point  and  in  which  the 
separation is typical of the  turbulent  free-interaction  type.  The  abruptness of the 
forebody-cylinder  juncture  may  have  an  important effect on  the  location of transition  and 
therefore on  the  separation  characteristics at M, = 3.0. The  increased  length of the 
1 5 O  cone  and  ogive  forebodies,  relative  to 30° cone  forebody,  increased  the  local  Reynolds 
number at a given  distance  from  the base. The effect of increased  length  offsets  the 
effect of decreased  abruptness  to  some  extent  in  the  comparison of the 30' cone  and  ogive 
forebody  flow fields. At similar  lengths,  the flat forebody  caused  more  turbulence  (vis- 
ible  in  the  shear  layer)  than  the 300 cone  forebody,  and  the 15' cone  forebody  caused 
more  turbulence  than  the  ogive  forebody.  In  comparing  the 15O and 30' cone  forebody 
flow fields, the  conclusion  reached  seems  to  be that the  length  change is more  important 
at the  conditions  shown  than the juncture  change,  since  transition is both more  forward 
and  closer  to  the  separation point for the 15' cone. 

The flat forebody  flow  field  has a larger  secondary flow at M, = 6.0 (fig.  7(c))  than 
at M, = 4.5 (fig.  7(b)),  which is expected  because  p. p, is greater  at M, = 6.0. 
For the 30° cone, 15' cone,  and  ogive  forebodies,  however, the extent of the  secondary  flow 
is nearly  equal  for  both  free-stream Mach numbers.  This  result  can  be  understood by 
realizing that for  the  flat  forebody,  the bow shock wave is located far enough from  the body 
to  assure  that   the  secondary flow  does not affect it at  the  p p,  of M, = 4.5 ,  and  the 
secondary  flow  can  expand as p. p, is increased.  This  condition is not t rue  for   the 
pointed  forebodies.  Because  the bow shock wave is attached  and  therefore  located  more 
closely  to  the body, the  secondary  flow is more  limited  in  the  extent  to  which it can  expand 
with pj/p, before  affecting  the bow shock  wave.  Once  the  secondary flow  begins  to 
affect  the  bow-shock-wave  location,  larger  changes  in  p. p, are   required  for  given 
increases  in  the  extent of the  secondary  flow. At M, = 6.0, the  included  angle of the bow 
shock  wave is less than  that  at M, = 4.5,  and  the  secondary  flow  therefore  affects  the bow 
shock wave when the extent of the  secondary  flow is less.  The bow shock  wave was closest 
to   the body for  the 15O cone  forebody  at M, = 6.0 (fig.  7(c)).  The  secondary  flow  was so  
restricted  from  radial  expansion  that it pushed  farther  forward  than  for  any  other  forebody. 
This  condition  caused the expansion at the  cone-cylinder  juncture  to  be  eliminated and the 
separation  point  to  move  forward  on the conical  section of the  forebody. 

I/ 

il 
I /  

J/ 

The  pressures  at orifices 1 and 2 for M, = 3.0 (fig. 8(a))  were  highest  for  the 15' 
cone  forebody.  The  extent of flow  separation  was  also  maximum  for  this  forebody  (schlie- 
ren  photographs  in  fig.  7(a)).  Likewise,  the 30' cone  forebody  data  show the second  high- 
est pressure  at orifices 1 and 2 and  the  second  largest  separated  region.  The  ogive  fore- 
body pressure  data show a slight  increase  above jet-off  values; this  result   corresponds  to 
the  small  separation  angle  where the shear  layer  was  laminar.  The  flat  forebody  pres- 
sure  data  show a negligible  increase  above jet-off  values; this condition  corresponds  to 
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the  observed  turbulent  separation  aft of orifices 1 and 2. Nearer   the jet, however,  the 
forebody  had  little effect. At M, = 4.5 (fig.  8(b)),  the  pressures  reflect  the  separation 
angle  for  the  pointed  forebodies,  and  the  variation  with  position  along  the body is the  same 
for  the 15O cone  and  ogive  forebodies as for  the 30° cone  forebody.  The  pressure  for  the 
flat  forebody  was  the  lowest  for  the  forebodies at the  forward  orifices  and  raised  to  the 
highest at orifice 5. The  pressure  data   for  M, = 6.0 (fig.  8(c))  show  the  same  trends 
as that  for M, = 4.5 but at  a higher  level of  p/p,. This  result  was  expected  because 
pj/p,  was  greater at M, = 6.0. 

Effect of Centerbody  Length 

The  effects of centerbody  length  on  the  flow  field  and  surface  pressure  distribution 
a r e  given  in  figures  9  and  10,  respectively.  The two effects of centerbody  length  which 
affect  the flow  field  visibly are first, the  increased  local  Reynolds  number  at a given 
distance  from  the  nozzles  with  the  long  centerbody,  and  second,  the  increased  displace- 
ment of the bow shock  wave  from  the  nozzles  with  the  long  centerbody.  The  increased 
Reynolds  number at M, = 3.0 was  sufficient  to  change  the  type of separation  from 
transitional  to  turbulent.  (See  fig.  9(a).)  The  lower  Reynolds  number flow on the  short  
centerbody  permitted  transitional  separation  which  reached  the  cone-cylinder  juncture, 
whereas  the  higher  Reynolds  number  flow on the  long  centerbody  did not separate  until 
well aft of the  cone-cylinder  juncture.  The  effect of the  location of the bow shock  wave 
can  be  seen  in  the  flow  field  photographs  at M, = 4.5  and M, = 6.0. (See  figs. 9(b) 
and  9(c).) At the  jet  pressure  shown,  the  secondary  flow  extended  radially  nearly  to  the 
bow shock  wave  for  both  centerbody  lengths.  The size of secondary  flow  field  seems  to 
be  more  nearly  proportional  to  centerbody  length  than  to  centerbody  or  nozzle  diameter. 
The  surface  pressure  distributions  at  !VIco = 4.5 and M, = 6.0 (figs.  10(b)  and  lO(c)) 
show  that  the  pressures  were  considerably  lower on the  long  centerbody.  This  fact 
indicates  that  although  the  secondary  flow  extended  nearly  to  the bow shock  wave  for  both 
centerbodies,  there  was less modification of the  bow-shock-wave  location by the  jet  flow 
for  the  long  centerbody. 

The  diameter of the  nozzle  relative  to  the  length of the  centerbody  had  an  important 
effect on the  surface  pressures  in  much  the  same way that jet pressure  did. If the  size 
of the  model is normalized by the  centerbody  length,  the  nozzles  were  smaller on the 
long  centerbody  configuration  and  had a smaller  effect on the  pressures  and bow-shock- 
wave  location, but the  s ize  of the  secondary flow  was decreased  little. 

Effect of Number of Nozzles 

Figure 11 shows  the  effect of the  number of nozzles  firing  on  the  flow  field  for  the 
reference jet pressure.   The 30° cone  forebody,  short  centerbody,  and Mj = 3.68 nozzles 
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were  used,  and M, = 3.0, M, = 4.5, and M, = 6.0 data are shown in  f igures   l l (a) ,  
ll(b),  and  ll(c),  respectively.  The  corresponding  pressure data are shown  in  figure  12. 

At all f ree-s t ream Mach  numbers,  the  nozzle 1 firing  photographs (fig. 11) indicate 
that  the  secondary  flow  did not separate as sharply  from  the body (if at all) as with all 
four  nozzles  firing.  Rather,  the  secondary  flow  penetrated  farther  forward  and  wrapped 
around  the body to  the  extent  that  the  primary  flow  separated  from  the  lower  surface of 
the body as far forward as the  cone-cylinder  juncture. 

The  surface  pressure  distributions (fig.  12)  show that  the  pressure is much  higher 
in  the  separated  region  for all four  nozzles  firing  than  in  the  same  location  with  nozzle 1 
firing  alone.  This  result would be  expected  with  the  decreased  separation  angle of the 
secondary  flow  observed  in  the  schlieren  photographs. 

Effect of Nozzle  Characteristics 

Figures 13  to  17 show  the  effect of varying  jet Mach number on the flow field  and 
surface  pressure  distribution.  All  the  data  show  that a lower Mj nozzle  had a greater  
effect on the flow field  than a higher Mj nozzle at a given it This  result  might be 
expected  because  the  reference  for jet pressure  was a total   pressure  measured in  the 
plenum  chamber,  and  the  static  pressure  at  the  jet  exit  and  p  p  decreased as Mj 
increased.  Also,  the  nozzle  throat area decreases  as Mj increases  for  fixed  jet-exit 
area, as was  the  case  in  this  investigation;  therefore,  the  nozzle  mass  flux  decreased 
with increased Mj. The  jet-exit  velocity,  however,  increases  with Mj and would be 
expected  to  increase the effect of the  nozzle on the  flow  field.  The  momentum  flux  and 
energy  flux  at  the  nozzle  exit  decrease as Mj increases,  but  only because of the 
decrease  in   mass  flux.  The  conclusion  can  therefore be drawn  that  for  the  situation of 
this  investigation,  the  effects of jet static  pressure  and  mass  flux  dominated  the  effect of 
jet velocity  in  determining the degree  to  which  the  secondary flow interfered with  the 
pr imary flow. 

, j  ' 

( j /  ,> 

Correlation of Impingement Pressure  Data  

In  reference 3, the   pressure at the  orifice  just  forward of the  nozzle  (orifice 6 for  
this test)  was found to  vary  l inearly with jet s ta t ic   pressure at a fixed Mj. The  pres-  
s u r e  coefficient of this  orifice  based on jet exit  conditions  was  found to   be independent of 

and  free-stream  Mach  number. By modifying  this  pressure  coefficient by a func- Pj/pm 
tion of jet Mach  number  and  plotting  the  modified  pressure  coefficient  against p; p,, 
all the data fell c lose  to  a single  straight  line.  The  slope of the  straight  line  provided  an 
empirical  constant which was  used  to  write an equation  relating  the  pressure  at  orifice 6 
to  the  jet-exit static pressure.  

J/ 
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Figure 18 shows  the  extent  to  which Cp,6 was  independent of pt . and of free- 
s t r eam Mach  number,  and  therefore of p. p,, which  varied  with  p  and  with M,. 
The  data are for   the 300 cone  forebody  and  the  short  centerbody  with  nozzle 1 firing.  In 
all cases, Cp,6 was  independent of p  and M, at the  highest jet pressures  (when 
pj/p, is calculated  for  these  points  based  on  nominal Mj and p,, it is found to  be 
greater  than 50) and  had a distinct  mean  value  for  each jet Mach  number.  The  flow  in 
the  impingement  region is therefore   s imilar   to  static test results  for  underexpanded free 
jets impinging upon an  adjacent  surface as reported  in  reference 7. All  points  with  Cp,6 
less negative  than  the  mean  represent  conditions  with  p p, less  than  10,  and  the  change 
is probably  due  to  the  higher  relative p,. All  points  with  Cp,6  more  negative  than  the 
mean  represent  conditions  with  p p, between  10  and 50. 

J l  
,J 

t , j  

t , j  

j l  

j/ 
Figures  19  and 20 show a comparison of the  present  results with  those of refer-  

ence 3. Because p6 does not measure  the  maximum  surface  pressure  and is difficult 
to  measure  because  i t  is located  in a region of a steep  pressure  gradient,  further  effort 
to   cor re la te  p6 data  has not been  attempted. 

SUMMARY O F  RESULTS 

Some of the  effects of supersonic  conical  nozzles  exhausting  into  an  oncoming 
s t ream  near  a large  cylindrical body have  been  investigated  for  free-stream  Mach  num- 
be r s  of 3.0, 4.5, and 6.0. The  results  may  be  summarized as follows: 

1. The  location of the bow shock  wave at jet-off  conditions  was  important  in  deter- 
mining  the  extent of the  secondary flow. 

2. When the  separation  occurred at the  forebody-cylinder  juncture,  the  level of the 
surface  pressure  was  closely  related  to  the  separation  angle. 

3. When the  separation  occurred  on  the  cylindrical  section of the  model, it was 
free interaction  and both transitional  and  turbulent  types  appeared  to  exist,  depending on 
local  Reynolds  number. 

4. Jet stagnation  pressure,  static  pressure,  and jet m a s s  flux  appeared  to  be  the 
dominant  nozzle  parameters  in  determining  the  extent  to  which  the  secondary  flow 
affected  the flow  field. 
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5. The  surface  pressure  just   forward of the  nozzle  did not depend on free-s t ream 
conditions  and  therefore was s imi l a r   t o  static test results  for  underexpanded free jets 
impinging  upon an  adjacent  surface,  except  for  ratios of jet-exit static pressure   to  free- 
s t r eam static pressure  less than 50. 

Langley  Research  Center, 
National  Aeronautics and Space  Administration, 

Hampton, Va., November 18, 1970. 
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Figure 1.- General  model  arrangement.  d = 6.71 cm (2.64 in.) 
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Figure 2.- Model details and orifice  locations. d = 6.71 cm (2.64 in,). 



(a) Schlieren photogra-ph. 
L-70-8002 

Figure 3.-  Flow field  for  basic  test  condition at M, = 6.0. Reference  jet  pressure; 30° cone 
forebody;  short  centerbody; all four  nozzles  firing; Mj = 3.68. 
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(b) Schematic  representation. 

Figure 3.- Concluded. 
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15O cone Flat 

L-70-8004 
(a) M, = 3.0. 

Figure 4.- Effect of forebody  shape on the flow  field  for  jet  off.  Short  centerbody. 
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(b) M, = 4.5. 

Figure 4.- Continued. 
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(c) M, = 6.0. 

Figure 4.- Concluded. 
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L-70-8007 
(a) M, = 3.0. 

Figure 5.- Effect of jet  pressure on the flow field. 30' cone  forebody; short  centerbody; all 
four  nozzles  firing; Mj = 3.68. 
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(b) M, = 4.5. 

Figure 5 . -  Continued. 
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Figure 5.- Concluded. 
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(a) M, = 3.0. 

Figure 6.- Effect of jet pressure  on the  surface  pressure  distribution. 300 cone 
forebody;  short  centerbody; all four  nozzles  firing; Mj = 3.68. 
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Figure 6.- Continued. 
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30' cone  Ogive 

15' cone Flat 

L-70-8010 
(a) M, = 3.0. 

Figure 7.- Effect of forebody  shape on the flow field  for  reference  jet  pressure. Short centerbody; 
all four  nozzles  firing; Mj = 3.68. 
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Figure 7.- Continued. 
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Figure 7.-  Concluded. 
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(b) M, = 4.5. 

Figure 8.- Continued. 
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Figure 8. - Concluded. 
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Jet off; 15' cone  forebody; short centerbody 

Je t  off; 1 6 O  cone forebody; long centerbody 

pt ,3 
- . = 1.0; 15' cone  forebody; short  centerbody 

Pt , j  
- = 1.0; 16' cone  forebody;  long  centerbody 

L-70-8013 
(a) M, = 3.0. 

Figure 9.- Effect of centerbody  length on the flow field  for  reference  jet  pressure and for  jet off. 
All four  nozzles  firing; Mj = 3.68. 
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Jet off; 15' cone  forebody; short centerbody 
Pt ,j - = 1.0; 15' cone  forebody;  short  centerbody 

Je t  off; 16' cone  forebody;  long  centerbody Pt ,j 
- = 1.0; 16' cone  forebody;  long  centerbody 

L-70-8014 
(b) M, = 4.5. 

Figure 9.- Continued. 
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(c) M, = 6.0. 

Figure 9.- Concluded. 
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Figure 10.- Effect of centerbody  length on the  surface  pressure  distribution  for  reference jet pressure 
and  for jet off. All four  nozzles  firing; Mj = 3.68. 
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Figure 10.- Continued. 
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Figure 10.- Concluded. 

38 



I -  

Nozzles 1, 2,  3, 4 firing 

Nozzle 1 firing 
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(a) M, = 3.0. 

Figure 11.- Effect of number of nozzles  firing on the 
flow  field  for  reference  jet  pressure. 30° cone 
forebody;  short  centerbody; Mj = 3.68. 
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Nozzles 1, 2, 3,  4 firing 

Nozzle 1 firing 

(b) M, = 4.5. 

Figure 11 .- Continued. 
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Nozzles 1, 2,  3,  4 firing 

Nozzle 1 firing 

L-70-8018 
(c) M, = 6.0. 

Figure 11.- Concluded. 
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Figure 12.- Effect of number of nozzles  firing on the  surface  pressure  distribution  for  reference  jet  pressure. 
Jet-off  data  included; 30° cone  forebody;  short  centerbody; Mj = 3.68. 
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Figure 12.- Continued. 
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M. = 3.68 J 

(a) M, = 3.0. 

Mj = 3.68 

L-70-8019 
(b) Ma, = 4.5. 

Figure 13.- Effect of nozzle  characteristics on the flow field  for  reference  jet  pressure. Ogive fore- 
body; short  centerbody; all four  nozzles  firing. 
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Figure 14.- Effect of nozzle  characteristics on the  surface  pressure 
distribution  for  reference  jet  pressure.  Jet-off  data  included; 
ogive  forebody;  short  centerbody; all four  nozzles  firing. 
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(b) M, = 4.5. 

Figure 14.- Concluded. 
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Figure 15.- Effect of nozzle  characteristics on the  surface  pressure  distribution  for 0.8 
of the  reference  jet  pressure.  Jet-off  data  included; 30° cone  forebody;  short 
centerbody; all four  nozzles  firing. 
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Figure 15.- Continued. 
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Figure 16.- Continued. 
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Mj = 3.68 

L-70-8022 
(c )  M, = 6.0. 

Figure 16.- Concluded. 
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Figure 17.- Effect of nozzle  characteristics on the  surface  pressure  distribution  for 
reference  jet   pressure.   Jet-off  data included; 30' cone  forebody; short center- 
body; nozzle 1 firing. 
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Figure 17.- Continued. 
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Figure 18.- Independence of Cp,6 from  variations with 
M, and  p for various  values of Mj. 

t ,j 

57 

" 



- 40 

- 36 

- 32 

- 2e 

- 2 4  

N 
E 

-20 2 
Y 

(D 
a 

- 1 6  

- 1 2  

- 8  

- 4  

Figure 19.- Comparison of orifice 6 pressure  data  for 30' cone  forebody,  short 
centerbody,  nozzle 1 firing with equation (7) of reference 3. 
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